2025年高考核磁共振儀的發(fā)明
來源:網(wǎng)絡整理 2024-12-12 19:18:28
核磁共振儀的發(fā)明
核磁共振儀廣泛用于有機物質(zhì)的研究,化學反應動力學,高分子化學以及醫(yī)學,藥學和生物學等領域。20年來,由于這一技術的飛速發(fā)展,它已經(jīng)成為化學領域最重要的分析技術之一。
早在1924年,奧地利物理學家泡里就提出了某些核可能有自旋和磁矩。"自旋"一詞起源于帶電粒子,如質(zhì)子、電子繞自身軸線旋轉(zhuǎn)的經(jīng)典圖像。這種運動必然產(chǎn)生角動量和磁偶極矩,因為旋轉(zhuǎn)的電荷相當于一個電流線圈,由經(jīng)典電磁理論可知它們要產(chǎn)生磁場。當然這樣的解釋只是比較形象的比擬,實際情況要比這復雜得多。
原子核自旋的情況可用自旋量子數(shù)I表示。自旋量子獲得,質(zhì)量數(shù)的原子序數(shù)之間有以下關系:
質(zhì)量數(shù)原子序數(shù)自旋量子數(shù)(I)
奇數(shù)奇數(shù)或偶數(shù)1/2,3/2,5/2……
偶數(shù)偶數(shù)0
偶數(shù)奇數(shù)1,2,3……
1>0的原子核在自旋時會產(chǎn)生磁場;I為1/2的核,其電荷分布是球狀;而I≥1的核,其電荷分布不是球狀,因此有磁極矩。
I為0的原子核置于強大的磁場中,在強磁場的作用下,就會發(fā)生能級分裂,如果用一個與其能級相適應的頻率的電磁輻射時,就會發(fā)生共振吸收,核磁共振的名稱就是來源于此。
斯特恩和蓋拉赫1924年在原子束實驗中觀察到了鋰原子和銀原子的磁偏轉(zhuǎn),并測量了未成對電子引起的原子磁矩。
1933年斯特恩等人測量了質(zhì)子的磁矩。1939年比拉第一次進行了核磁共振的實驗。1946年美國的普西爾和布少赫同時提出質(zhì)子核磁共振的實驗報告,他們首先用核磁共振的方法研究了固體物質(zhì)、原子核的性質(zhì)、原子核之間及核周圍環(huán)境能量交換等問題。為此他們兩位獲得了1952年諾貝爾物理獎。50年代核磁共振方法開始應用于化學領域,1950年斯坦福大學的兩位物理學家普羅克特和虞以NH4NO3水溶液作為氮原子核源,在測定14N的磁矩時,發(fā)現(xiàn)兩個性質(zhì)截然不同的共振信號,從而發(fā)現(xiàn)了同一種原子核可隨其化學環(huán)境的不同吸收能量的共振條件也不同,即核磁共振頻率不同。這種現(xiàn)象稱為"化學位移"。這是由于原子核外電子形成的磁場與外加磁場相互作用的結(jié)果;瘜W位移是鑒別官能團的重要依據(jù)。因為化學位移的大小與鍵的性質(zhì)和鍵合的元素種類等有密切的關系。此外,各組原子核之間的磁相互作用構成自旋──自旋耦合。這種作用常常使得化學位移不同的各組原子核在共振吸收圖上顯示的不是單峰而是多重峰,這種情況是由分子中鄰近原子核的數(shù)目,距離用對稱性等因素決定,因此它有助于提示整個分子的。
由于上述成果高分辨核磁共振儀得以問世。開始測量的核主要是氫核,這是由于它的核磁共振信號較強。隨著儀器性能的提高,13C,31P,15N等的核也能測量,儀器使用的磁場也越來越強。50年代制造出IT(特拉斯)磁場,60年代制造出2T的磁場,并利用起導現(xiàn)象制造出5T的起導磁體。70年代造出8T磁場,F(xiàn)在核磁共振儀已經(jīng)被應用到從小分子到蛋白質(zhì)和核酸的各種各樣化學系統(tǒng)中。
相關推薦:
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網(wǎng)"微信公眾號
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢