高考數(shù)學(xué)知識點(diǎn):軌跡方程的求解
來源:e度視頻 2012-12-07 14:42:44
符合一定條件的動點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡.
軌跡,包含兩個方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對應(yīng)的代數(shù)描述。
一、求動點(diǎn)的軌跡方程的基本步驟
、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點(diǎn)M的坐標(biāo);
、矊懗鳇c(diǎn)M的集合;
、沉谐龇匠=0;
、椿喎匠虨樽詈喰问;
⒌檢驗(yàn)。
二、求動點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P(guān)點(diǎn)法:用動點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
、磪(shù)法:當(dāng)動點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
、到卉壏ǎ簩蓜忧方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
*直譯法:求動點(diǎn)軌跡方程的一般步驟
、俳ㄏ——建立適當(dāng)?shù)淖鴺?biāo)系;
、谠O(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
、哿惺——列出動點(diǎn)p所滿足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點(diǎn)軌跡方程。
相關(guān)推薦
- 高考一輪復(fù)習(xí):高考數(shù)學(xué)?贾R點(diǎn)匯總
- 高考數(shù)學(xué)知識點(diǎn):拋物線的標(biāo)準(zhǔn)方程的求
- 高考數(shù)學(xué)知識點(diǎn):橢圓中的最值問題
- 高考數(shù)學(xué)?贾R點(diǎn)之排列組合二項(xiàng)定理
- 高考數(shù)學(xué)常考知識點(diǎn)之立體幾何
- 高考數(shù)學(xué)?贾R點(diǎn)之直線與圓的方程
- 高考數(shù)學(xué)常考知識點(diǎn)之不等式
- 高考數(shù)學(xué)?贾R點(diǎn)之空間向量
- 高考數(shù)學(xué)?贾R點(diǎn)之平面向量
- 高考數(shù)學(xué)?贾R點(diǎn)之三角函數(shù)
高考院校庫(挑大學(xué)·選專業(yè),一步到位!)
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢